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Abstract. We prove that the total space of a prequantization bundle of a prequantizable
Poisson manifold admits a Jacobi structure and, conversely, a regular Jacobi manifold is the
prequantization bundle of a Poisson manifold. Illustrative examples are presented.

1. Introduction

Jacobi structures were introduced by Lichnerowicz [13, 14] and they are an important setting
for physics. In fact, the algebra of functionsC∞(M, R) of a Jacobi manifoldM is endowed
with a Jacobi bracket in such a way that it is a local Lie algebra in the sense of Kirillov
([10]). Jacobi structures are natural generalizations of symplectic and Poisson manifolds.

The first step for the geometric quantization theory due to Konstant and Souriau is to
find a prequantization bundle, that is, a principal circle bundle over the symplectic manifold.
Thus, the obstruction to the existence of a prequantization is just the de Rham cohomology
class of the symplectic form. For Poisson manifolds, the obstruction is the Lichnerowicz–
Poisson cohomology class of the 2-vector (see [20]).

The aim of this paper is to prove that the total space of a prequantization bundle of
a prequantizable Poisson manifold admits a Jacobi structure. Conversely, we also prove
that a regular Jacobi manifold endowed with an appropiate 1-form, is the prequantization
bundle of a Poisson manifold. Roughly speaking, we can say that prequantization bundles of
Poisson manifolds are just regular Jacobi structures. We analyse three particular cases: Lie–
Poisson structures, symplectic manifolds and cosymplectic manifolds. The corresponding
Jacobi structures are linear structures, contact or locally conformal symplectic manifolds,
respectively.

2. Jacobi and Poisson manifolds

2.1. Prequantizable Poisson manifolds and the Lichnerowicz–Poisson cohomology

Let M̄ be aC∞ manifold. Denote byX(M̄) the Lie algebra of the vector fields on̄M and
by C∞(M̄, R) the algebra ofC∞ real-valued functions on̄M. A Jacobi structureon M̄ is
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a pair(3̄, E) where3̄ is a 2-vector andE a vector field onM̄ verifying

[3̄, 3̄] = 2E ∧ 3̄ [E, 3̄] = 0. (1)

Here [, ] is the Schouten–Nijenhuis bracket(for the definition and properties of the
Schouten–Nijenhuis bracket, we refer to [20]). The manifoldM̄ endowed with a Jacobi
structure is called aJacobi manifold. If (M̄, 3̄, E) is a Jacobi manifold we can define a
bracket of functions (calledJacobi bracket) as follows:

{f̄ , ḡ} = 3̄(df̄ , dḡ) + f̄ E(ḡ) − ḡE(f̄ ) for all f̄ , ḡ ∈ C∞(M̄, R). (2)

The spaceC∞(M̄, R) endowed with the Jacobi bracket is alocal Lie algebra in the sense
of Kirillov (see [10]). Conversely, a structure of local Lie algebra on the spaceC∞(M̄, R)

of real-valued functions on a manifold̄M defines a Jacobi structure on̄M (see [10, 8]).
Let (M̄, 3̄, E) be a Jacobi manifold. Define a mapping#̄ : �1(M̄) → X(M̄) from the

space of 1-forms onM̄, �1(M̄), ontoX(M̄) as follows:

(#̄ᾱ)(β̄) = 3̄(ᾱ, β̄) (3)

for ᾱ, β̄ ∈ �1(M̄). The mappinḡ# can be extended to a mapping, which we also denote by
#̄, from the space ofp-forms �p(M̄) on M̄ onto the space ofp-vectorsVp(M̄) by putting

#̄(f̄ ) = f̄ #̄(ᾱ)(ᾱ1, . . . , ᾱp) = (−1)pᾱ(#̄ᾱ1, . . . , #̄ᾱp) (4)

for f̄ ∈ C∞(M̄, R), ᾱ ∈ �p(M̄) and ᾱ1, . . . , ᾱp ∈ �1(M̄).
If f̄ ∈ C∞(M̄, R), the vector fieldXf̄ defined byXf̄ = #̄(df̄ ) + f̄ E is called the

Hamiltonian vector fieldassociated withf̄ . It should be noted that the Hamiltonian vector
field associated with the constant function 1 is justE. A direct computation shows that
[Xf̄ , Xḡ] = X{f̄ ,ḡ} (see [14, 15]).

If the vector fieldE vanishes,{, } is a derivation in each argument, i.e.{ , } defines
a Poisson bracketon M̄. In this case, (1) reduces to [3̄, 3̄] = 0, and (M̄, 3̄) is a
Poisson manifold. Poisson and Jacobi manifolds were introduced by Lichnerowicz (see
[12–14]).

Now, let (M, 3) be a Poisson manifold. We can define the contravariant exterior
derivative σ : Vp(M) → Vp+1(M) by σ(P ) = −[3, P ]. Since σ 2 = 0, σ defines a
cohomology onM which is called theLichnerowicz–Poisson(LP for simplicity)cohomology
for the Poisson manifoldM (see [12]). Thepth LP-cohomology group is then given by

H
p
LP(M) = ker{σ : Vp(M) → Vp+1(M)}

Im{σ : Vp−1(M) → Vp(M)} .

Notice thatσ(3) = 0 and thus3 defines a cohomology class [3] ∈ H 2
LP(M). Moreover,

if # : �p(M) → Vp(M) is the mapping given by (4) then, using thatσ ◦ # = −# ◦ d

(see [12, 20]), we have induced homomorphisms in cohomology # :H
p

dR(M) → H
p
LP(M),

H
p

dR(M) being thepth de Rham cohomology group ofM.
It is well known that there is a one-to-one correspondence between the equivalence

classes of principal circle bundles over a manifoldM and the cohomology groupH 2(M, Z).
In fact, if � is an integer closed 2-form onM then there exists a principal circle bundle
π : M̄ → M overM with connection formθ such that� is the curvature of the connection
θ , that is,π∗� = dθ (see [11]).

A Poisson manifold(M, 3) admits aprequantization bundle(see [20]) if there is a
principal circle bundleπ : M̄ → M over M corresponding to an integer closed 2-form
� on M such that #[�] = [3]. Notice that the above condition can also be expressed as
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follows: (M, 3) has a prequantization bundle if and only if there exists a vector fieldA on
M, and an integer closed 2-form� on M, such that

3 + LA3 = #�

whereL is the Lie derivative onM.

2.2. Examples of Jacobi manifolds

Next, we will present some examples of Jacobi manifolds which are Poisson manifolds.

2.2.1. Lie–Poisson structures.Let g be a finite-dimensional Lie algebra with Lie bracket
[, ] and denote byg∗ the dual vector space ofg. Given two functionsf, g ∈ C∞(g∗, R),
we define{f, g} as follows. For a pointx ∈ g∗, we linearizef andg, namely, we take the
tangent maps df (x) and dg(x) at x and identify them with two elementŝf , ĝ ∈ g. Thus,
[f̂ , ĝ] ∈ g, and we define

{f, g}(x) = 〈[f̂ , ĝ], x〉.
{ , } is the so-calledLie–Poisson bracketon g∗. If xi are global coordinates forg∗ obtained
from a basis, we have

3 =
∑
i<j

3ij ∂

∂xi
∧ ∂

∂xj
(5)

where

3ij =
∑

k

C
ij

k xk (6)

C
ij

k being the structure constants ofg.

2.2.2. Symplectic manifolds.A symplectic manifoldis a pair(M, �), whereM is an even-
dimensional manifold and� is a closed non-degenerate 2-form onM. We define a Poisson
2-vector3 on M by

3(α, β) = �([−1(α), [−1(β)) (7)

for all α, β ∈ �1(M), where[ : X(M) → �1(M) is the isomorphism ofC∞(M, R)-modules
given by[(X) = iX�. Notice that[−1 = −# and that3 = #�. Moreover, in this case, the
homomorphism # :Hp

dR(M) → H
p
LP(M) (see section 2.1) is an isomorphism (see [7]). If

we choose canonical coordinates(qi, pi) on M, we have

� =
∑

i

dqi ∧ dpi 3 =
∑

i

∂

∂qi
∧ ∂

∂pi

.

2.2.3. Cosymplectic manifolds.A cosymplectic manifold(see [1, 2, 4]) is a triple(M, �, η),
whereM is an odd-dimensional manifold,� is a closed 2-form andη is a closed 1-form
on M such thatη ∧�m is a volume form, with dimM = 2m+ 1. If [ : X(M) → �1(M) is
the isomorphism ofC∞(M, R)-modules defined by[(X) = iX� + (iXη)η, then the vector
field ξ = [−1(η) is called theReeb vector fieldof M. The vector fieldξ is characterized
by the relationsiξ� = 0 andiξ η = 1. In particular,Lξ� = 0 andLξ η = 0. A 2-vector3
on M is defined by

3(α, β) = �([−1(α), [−1(β)) = �([−1(α − α(ξ)η), [−1(β − β(ξ)η)) (8)
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for all α, β ∈ �1(M). Thus, (M, 3) becomes a Poisson manifold. It should be noticed
that #α = −[−1(α) + α(ξ)ξ , for α ∈ �1(M), and that #� = 3. Moreover,Lξ3 = 0. In
canonical coordinates{q1, . . . , qm, p1, . . . , pm, z}, we have ([1, 4])

� =
m∑

i=1

dqi ∧ dpi η = dz ξ = ∂

∂z
3 =

m∑
i=1

∂

∂qi
∧ ∂

∂pi

.

Other very interesting examples of Jacobi manifolds, which are not Poisson manifolds, are
the contact and the locally conformal symplectic manifolds that we will next describe.

2.2.4. Contact manifolds.Let M̄ be a 2m+1-dimensional manifold andθ a 1-form onM̄.
We said thatθ is a contact 1-form ifθ ∧ (dθ)m 6= 0 at every point. In such a case(M̄, θ) is
termed acontact manifold(see, for instance, [1, 2]). Using the classical theorem of Darboux,
around every point ofM̄ there exists canonical coordinates(t, q1, . . . , qm, p1, . . . , pm) such
that

θ = dt −
∑

i

pi dqi.

A contact manifold(M̄, θ) is a Jacobi manifold. In fact, we define the 2-vector3̄ by

3̄(ᾱ, β̄) = dθ([̄−1(ᾱ), [̄−1(β̄)) (9)

for all ᾱ, β̄ ∈ �1(M̄), where [̄ : X(M̄) → �1(M̄) is the isomorphism ofC∞(M̄, R)-
modules given bȳ[(X̄) = iX̄ dθ + θ(X̄)θ . The vector fieldE is just the Reeb vector field
ξ = [̄−1(θ) of (M̄, θ). The vector fieldξ is characterized by the relationsiξ θ = 1 and
iξ dθ = 0. A direct computation shows that#̄ᾱ = −[̄−1ᾱ + ᾱ(ξ)ξ , for ᾱ ∈ �1(M̄) and that
#̄(dθ) = 3̄. Using canonical coordinates we get

3̄ =
∑

i

(
∂

∂qi
+ pi

∂

∂t

)
∧ ∂

∂pi

E = ∂

∂t
.

2.2.5. Locally conformal symplectic manifolds.An almost symplectic manifoldis a pair
(M̄, 8), whereM̄ is an even-dimensional manifold and8 is a non-degenerate 2-form on
M̄. An almost symplectic manifold is said to belocally conformal symplectic (LCS)if for
each pointx̄ ∈ M̄ there is an open neighbourhood̄U such that d(e−σ8) = 0, for some
function σ : Ū → R (see for example [19]). Equivalently,(M̄, 8) is a LCS manifold if
there exists a closed 1-formω such that

d8 = ω ∧ 8. (10)

The 1-formω is called theLee 1-formof M̄. It is obvious that the LCS manifolds with
Lee 1-form identically zero are just the symplectic manifolds.

In a similar way that for contact manifolds, we define a 2-vector3̄ and a vector field
E on M̄, which are given by

3̄(ᾱ, β̄) = 8([̄−1(ᾱ), [̄−1(β̄)) E = [̄−1ω (11)

for all 1-forms ᾱ and β̄, where [̄ : X(M̄) → �1(M̄) is the isomorphism ofC∞(M̄, R)-
modules defined bȳ[(X̄) = iX̄8. Then (M̄, 3̄, E) is a Jacobi manifold (see [6, 10, 14]).
Now, #̄ = −[̄−1 and#̄8 = 3̄. Notice that

ω(E) = 0 LEω = 0 LE8 = 0. (12)
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2.3. The characteristic foliation of a Jacobi manifold

We will show that an arbitrary Jacobi manifold is foliated by leaves which are contact or
LCS manifolds. Roughly speaking, a Jacobi manifold is made of contact or LCS pieces.

A Jacobi manifold(M̄, 3̄, E) is said to betransitive if for all x̄ ∈ M̄ the tangent space
Tx̄M̄ is generated bȳ#x̄ (T

∗
x̄ M̄) andEx̄ [6].

Let (M̄, 3̄, E) be a transitive Jacobi manifold. Then we have the following (see [6]
and the references therein).

(a) If dimM̄ = 2m+1, it follows thatTx̄M̄ = #̄x̄ (T
∗
x̄ M̄)⊕〈Ex̄〉 for all x̄ ∈ M̄. Therefore,

the 1-formθ defined byθx̄(ū+λEx̄) = λ, for ū ∈ #̄x̄ (T
∗
x̄ M̄) andλ ∈ R, is a contact 1-form.

(b) If dim M̄ = 2m, we deduce that̄#x̄ : T ∗
x̄ M̄ → Tx̄M̄ is an isomorphism. Thus, if we

put

8x̄(X̄, Ȳ ) = 3̄x̄((#̄x̄ )
−1X̄, (#̄x̄ )

−1Ȳ ) for all X̄, Ȳ ∈ Tx̄M̄

andωx̄ = iEx̄
8x̄ , we get that(M̄, 8) is a LCS manifold with Lee 1-formω.

Consequently, the transitive Jacobi manifolds are just the contact or LCS manifolds. It
should be noticed that the transitive Poisson manifolds are just the symplectic manifolds.

Now, let (M̄, 3̄, E) be an arbitrary Jacobi manifold. Denote bȳDx̄ the subspace of
Tx̄M̄ generated by all the Hamiltonian vector fields evaluated at the pointx̄ ∈ M̄. In
other words,D̄x̄ = #̄x̄ (T

∗
x̄ M̄) + 〈Ex̄〉. Since D̄ is involutive, one easily follows that̄D

defines a generalized foliation in the sense of Sussmann [17]. This foliation is termed the
characteristic foliationin [6]. Moreover, if L̄ is a leaf ofD̄, the Jacobi structure(3̄, E) on
M̄ induces a transitive Jacobi structure(3̄L̄, EL̄) on L̄. Thus, we deduce that the leaves of
D̄ are contact or LCS manifolds (for a detailed study we refer to [6]). IfM̄ is a Poisson
manifold then the leaves of̄D are symplectic manifolds. In particular, for a cosymplectic
manifold (M, �, η) the characteristic foliation is the foliation of codimension 1 given by
η = 0 (see [1, 4]). For a Lie–Poisson structure the leaves of the symplectic foliation are the
coadjoint orbits (see, for instance, [20]).

2.4. Regular Jacobi manifolds

A Jacobi manifold(M̄, 3̄, E) is said to beregular ([5]) if the vector fieldE is complete,
E 6= 0 at every point and the one-dimensional foliation defined byE is regular in the
sense of Palais [16]. In such a case, the space of leavesM = M̄/E has a structure of
differentiable manifold, and the canonical projectionπ : M̄ → M is a fibration (surjective
submersion). Moreover, we can define onM a 2-vector3 by 3(α, β)◦π = 3̄(π∗α, π∗β),

for all α, β ∈ �1(M). Notice that, from (1),3 is well defined and(M, 3) is a Poisson
manifold (see [6]). The relationship between the corresponding Jacobi and Poisson brackets
{, }M̄ and{, }M is given by the following formula:

{π∗f, π∗g}M̄ = {f, g}M ◦ π for all f, g ∈ C∞(M, R).

Thus, if f is a function onM, the Hamiltonian vector fields defined byf andπ∗f areπ -
related. In particular, ifD̄ andD are the characteristic foliations of̄M andM, respectively,
thenDπ(x̄) ⊆ πx̄

∗ (D̄x̄) = πx̄
∗ (#̄x̄ (T

∗
x̄ M̄)), for x̄ ∈ M̄.

3. Prequantizable Poisson manifolds and Jacobi structures

Let π : M̄ → M be a principal circle bundle over a manifoldM endowed with a connection
form θ .
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Suppose thatP is a p-vector onM. We define the horizontal lift ofP to M̄ as the
p-vectorP H on M̄ characterized by the following conditions:

P H(π∗α1, . . . , π
∗αp) = P(α1, . . . , αp) ◦ π iθP

H = 0 (13)

for α1, . . . , αp ∈ �1(M). Notice that ifP = X1 ∧ . . . ∧ Xp with Xi ∈ X(M) then

P H = XH
1 ∧ . . . ∧ XH

p (14)

whereXH
i , 1 6 i 6 p, is the horizontal lift of the vector fieldXi to M̄.

Theorem 3.1. Let (M, 3) be a Poisson manifold which admits a prequantization bundle
π : M̄ → M. Then, there exists on̄M a Jacobi structure(3̄, E) and a 1-formθ such that:

(i) (M̄, 3̄, E) is a regular Jacobi manifold and the corresponding quotient Poisson
manifold M̄/E is just M;

(ii) the vector fieldE satisfies

θ(E) = 1 LEθ = 0. (15)

Proof. Let θ be a connection form in the bundleπ : M̄ → M with curvature form
� ∈ �2(M) ([�] ∈ H 2(M, Z)) and letA be a vector field onM such that

3 + LA3 = #�. (16)

Denote byE the infinitesimal generator of the action ofS1 on M̄. Then, it is clear that
θ(E) = 1 andLEθ = 0.

Now, we consider onM̄ the 2-vector3̄ defined by

3̄ = 3H + E ∧ AH. (17)

From (13) and (15), we deduce that

LE3H = 0. (18)

Therefore, since

[E, AH] = 0 (19)

we obtain thatLE3̄ = [E, 3̄] = 0.
Next, we will prove that [̄3, 3̄] = 2E ∧ 3̄. If X, Y are vector fields onM we have that

[XH, Y H] = [X, Y ]H − (�(X, Y ) ◦ π)E. (20)

Thus, using (3), (4), (14), (19) and (20), we conclude that

[3H, 3H] = [3, 3]H + 2E ∧ (#�)H = 2E ∧ (#�)H

E ∧ AH, E ∧ AH] = 0.
(21)

On the other hand, from (18), we deduce that

[3H, E ∧ AH] = −E ∧ LAH3H. (22)

Moreover, a direct computation, using (13), (16), (19) and (20) shows that

(LAH3H)(π∗α, π∗β) = (−3H + (#�)H)(π∗α, π∗β)

for α, β ∈ �1(M) which, because (22), implies that

[3H, E ∧ AH] = E ∧ 3H − E ∧ (#�)H. (23)

Consequently, from (17), (21) and (23), we obtain that [3̄, 3̄] = 2E ∧ 3̄.
Finally, it is obvious that3̄(π∗α, π∗β) = 3(α, β) ◦ π , for α, β ∈ �1(M) (see (13) and

(17)). �
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Next, we will prove a converse of theorem 3.1.

Theorem 3.2. Let (M̄, 3̄, E) be a compact regular Jacobi manifold andθ a 1-form onM̄

such thatθ(E) = 1 andLEθ = 0. If M = M̄/E is the induced quotient Poisson manifold
then M admits a prequantization bundleπ : M̄ → M, π being the canonical projection,
and the induced Jacobi structure onM̄ is just (3̄, E).

Proof. Using the results of [18], we deduce that the period function ofE is constant.
Assume, for the sake of simplicity, that the period function ofE is equal to 1. ThenM̄
is a principal circle bundle overM, E is the infinitesimal generator of the action ofS1 on
M̄ and θ is a connection form in the bundle (see [18]). Suppose that� ∈ �2(M) is the
curvature form of the connectionθ , that is,

dθ = π∗�. (24)

Now, we consider onM̄ the vector fieldĀ given by

Ā = iθ 3̄. (25)

From (1) and (25), we deduce thatθ(Ā) = 0 and [E, Ā] = i(LEθ)3̄ + iθLE3̄ = 0, which
implies that there exists a vector fieldA on M such that

Ā = AH. (26)

A direct computation shows that (see (20))

(LA3)(α, β) ◦ π = (LAH3̄)(π∗α, π∗β) (27)

for α, β ∈ �1(M), where3 is the Poisson 2-vector ofM.

Using (1), (25) and (26), we have that

LAH3̄ = − 1
2iθ [3̄, 3̄] + (#̄(dθ)) = −3̄ + E ∧ AH + (#̄(dθ)). (28)

On the other hand, ifα ∈ �1(M), since the vector field̄#π∗α is π -projectable onto the
vector field #α (see section 2.4), from (4), (24) and (28), we deduce that

(LAH3̄)(π∗α, π∗β) = (−3(α, β) + (#�)(α, β)) ◦ π. (29)

Consequently, using (27) and (29), we conclude that

3 + LA3 = #�.

Finally, from (13), (25) and (26), we obtain that

3H = 3̄ − E ∧ AH

that is,3̄ = 3H + E ∧ AH. This ends the proof of our result. �

Let (M, 3) be a prequantizable Poisson manifold andπ : M̄ → M a prequantization
bundle. Using theorem 3.1, (17), (25), (26) and the fact that the Hamiltonian vector field
Xπ∗f onM̄ is π -projectable onto the Hamiltonian vector fieldXf onM, for f ∈ C∞(M, R),
we have
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Corollary 3.3. Let (M, 3) be a prequantizable Poisson manifold andπ : M̄ → M a
prequantization bundle. Suppose thatA is a vector field onM which satisfies (16) and that
(3̄, E) is the associated Jacobi structure onM̄.

(i) If f, g ∈ C∞(M, R) then

{π∗f, π∗g}M̄ = {f, g}M ◦ π

where{, }M̄ (respectively{, }M ) is the Jacobi bracket (respectively Poisson bracket) onM̄

(respectivelyM).
(ii) If Xf (respectivelyXπ∗f ) is the Hamiltonian vector field onM (respectivelyM̄)

associated with the functionf (respectivelyπ∗f ) then

Xπ∗f = XH
f + (π∗f − A(f ) ◦ π)E.

(iii) If D̄ (respectivelyD) is the characteristic foliation of̄M (respectivelyM) then

D̄ = (DH + 〈AH〉) ⊕ 〈E〉
whereDH is the horizontal lift toM̄ of the foliationD.

4. Examples

Example 4.1. (Lie–Poisson structures.)The Lie–Poisson structure3 on the dual spaceg∗

of a Lie algebrag is prequantizable, since it is exact. In fact, ifxi are global coordinates
for g∗ obtained from a basis, we have that3 = σ(A), where

A =
∑

i

xi ∂

∂xi
.

Thus, the prequantization bundle is trivial, saȳM = g∗ × S1, the connection is flat and,
if E is the canonical vector field onS1, then the induced Jacobi structure(3̄, E) on M̄ is
given by

3̄ =
∑
i,j,k
i<j

C
ij

k xk ∂

∂xi
∧ ∂

∂xj
+

∑
i

xiE ∧ ∂

∂xi
.

So,g∗ × S1 is endowed with a linear Jacobi structure.

Example 4.2. (Symplectic manifolds.)Let (M, �) be a symplectic manifold and3 the
Poisson 2-vector onM defined by (7). Using the results of section 2.2, we deduce thatM

is prequantizable as a Poisson manifold if and only ifM is prequantizable as a symplectic
manifold. But the necessary and sufficient condition to(M, �) be prequantizable is that
[�] would define an element of the integer cohomology groupH 2(M, Z).

Suppose that(M, �) is prequantizable and thatπ : M̄ → M is a prequantization bundle.
Then, the pair(3̄, E) is a Jacobi structure on̄M, where3̄ = 3H andE is the infinitesimal
generator of the action ofS1 on M̄ (notice that, in this case, a vector field onM satisfying
(16) is just the vector fieldA = 0).

Now, let θ be a connection form in the principal circle bundleπ : M̄ → M such
that π∗� = dθ . A direct computation shows thatθ is a contact 1-form onM̄. The Reeb
vector field of the contact structure isE. Denote by[̄ : X(M̄) → �1(M̄) the isomorphism
of C∞(M̄, R)-modules given bȳ[(X̄) = iX̄ dθ + θ(X̄)θ and by [ : X(M) → �1(M)

the isomorphism ofC∞(M, R)-modules defined by[(X) = iX�. Then, we have that
[̄XH = π∗([X), for X ∈ X(M), which implies that

[̄−1π∗α = ([−1α)H (30)
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for α ∈ �1(M). Thus, if (3̃, E) is the Jacobi structure defined by the contact 1-formθ on
M̄ we obtain, using (7), (9), (13) and (30), that

3̃(π∗α, π∗β) = dθ(([−1α)H, ([−1β)H) = 3(α, β) ◦ π = 3H(π∗α, π∗β)

for α, β ∈ �1(M). Therefore, sinceiθ 3̃ = 0, we deduce that̄3 = 3̃ (see (13) and (9)).
Finally, if Xf (respectivelyXπ∗f ) is the Hamiltonian vector field onM (respectively

M̄) associated with the functionf (respectivelyπ∗f ) then, from corollary 3.3, we conclude
that

Xπ∗f = XH
f + (π∗f )E.

Next, we will study two particular cases: the two-dimensional unit sphereS2 and the
two-dimensional real torusT2.

(i) The two-dimensional unit sphereS2 (see [9]). Let i : S2 → R3 be the canonical
inclusion and(x, y, z) the usual coordinates inR3. We consider onS2 the symplectic 2-form
� defined by

� = 1

4π
i∗(xdy ∧ dz − y dx ∧ dz + z dx ∧ dy).

[�] is a generator of the integer cohomology groupH 2(S2, Z) = Z. Thus, the symplectic
manifold (S2, �) is prequantizable. The corresponding Poisson bracket onS2 is given by

{i∗x, i∗y} = (4π)i∗z {i∗x, i∗z} = −(4π)i∗y {i∗y, i∗z} = (4π)i∗x.

Denote byS3 the three-dimensional unit sphere inR4

S3 = {(x1, x2, x3, x4) ∈ R4/(x1)
2 + (x2)

2 + (x3)
2 + (x4)

2 = 1}.
It is well known thatS3 is the total space of the principal circle bundle overS2 corresponding
to the integer closed 2-form�. In fact, the projection of the bundle is theHopf fibration
π : S3 → S2 and the action ofS1 on S3 is the usual. Notice that (see, for instance, [3])

π∗� = 1

π
j ∗(dx1 ∧ dx2 + dx3 ∧ dx4) (31)

wherej : S3 → R4 is the canonical inclusion.
Now, using the diffeomorphism betweenS3 and the special unitary groupSU(2) given

by

S3 → SU(2) (x1, x2, x3, x4) →
(

x1 + ix2 −x3 + ix4

x3 + ix4 x1 − ix2

)
we will describe the contact and Jacobi structures induced onSU(2).

Denote bysu(2) = {A ∈ gl(2, C)/ĀT = −A, traceX = 0} the Lie algebra ofSU(2)

and byσ1, σ2 andσ3 the Pauli matrices

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
.

Then, the matrices{√π iσ1,
√

π iσ2, 2π iσ3} form a basis ofsu(2) which defines onSU(2)

a basis of left invariant vector fields{X, Y, ξ}. Suppose that{α, β, θ} is the dual basis of
left invariant 1-forms. A direct computation shows that

[X, Y ] = −ξ [X, ξ ] = 4πY [Y, ξ ] = −4πX. (32)

Moreover, it is clear thatξ is the infinitesimal generator of the action ofS1 on SU(2). Also,
from (32), we have that

dα = 4πβ ∧ θ dβ = −4πα ∧ θ dθ = α ∧ β.
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In particular, Lξ θ = 0. Thus, θ is a connection form in the principal circle bundle
π : SU(2) ' S3 → S2 and, since the 2-formπ∗� is left invariant (see (31)), we deduce
that

dθ = α ∧ β = π∗�. (33)

Consequently, the Jacobi structure(3̄, E) defined by the contact 1-formθ on SU(2) is just
the Jacobi structure onSU(2) induced by the prequantizable symplectic manifold(S2, �).
In fact, using (33), we conclude that

3̄ = X ∧ Y E = ξ.

(ii) The two-dimensional real torusT2. Let �̄ be the usual symplectic 2-form onR2,
�̄ = dq ∧ dp, (q, p) being the canonical coordinates onR2. Denote by� the symplectic
2-form onT2 = R2/Z2 induced by�̄. [�] is a generator of the integer cohomology group
H 2(T2, Z) = Z. Thus, the symplectic manifold(T2, �) is prequantizable.

Now, let H be theHeisenberg group. It is well known thatH is the Lie group of
matrices of real numbers of the form

A =
( 1 q t

0 1 p

0 0 1

)
with q, p, t ∈ R. H is a connected simply connected nilpotent Lie group of dimension
three. A global system of coordinates(q, p, t) on H is defined by

q(A) = q p(A) = p t(A) = t.

A basis for the right invariant 1-forms onH is given by

α̃ = dq β̃ = dp θ̃ = dt − p dq (34)

and its dual basis of right invariant vector fields onH is given by

X̃ = ∂

∂q
+ p

∂

∂t
Ỹ = ∂

∂p
ξ̃ = ∂

∂t
. (35)

Denote by0 the subgroup of matrices ofH with integer entries and byM̄ = H/0 the
space of left cosets. Then̄M is a compact nilmanifold. The 1-forms̃α, β̃, θ̃ and the vector
fields X̃, Ỹ , ξ̃ on H all descend toM̄; denote the 1-forms and the vector fields induced on
M̄ by α, β, θ, X, Y andξ , respectively.

The spaceM̄ is a principal circle bundle overT2. The projectionπ of the bundle is

π [(q, p, t)] = [(q, p)] (36)

and the infinitesimal generator of the action ofS1 on M̄ is the vector fieldξ . Thus, from
(34), (35) and (36), we deduce thatθ is a connection form in the principal circle bundle
π : M̄ → T2 and

dθ = α ∧ β = π∗�.

Therefore, the Jacobi structure(3̄, E) defined onM̄ by the contact 1-formθ is just the
Jacobi structure induced on̄M by the prequantizable symplectic manifold(T2, �). In fact,
we have that

3̄ = X ∧ Y E = ξ.
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Example 4.3. (Cosymplectic manifolds.)Let (M, �, η) be a cosymplectic manifold with
Reeb vector fieldξ and3 the Poisson 2-vector onM defined by (8). Using the results of
section 2.2, we have that

3 + LA3 = #� (37)

with A = 0 or A = ξ .
Now, assume that [�] defines an element of the integer cohomology groupH 2(M, Z).

Then, from (37), we deduce that(M, 3) is a prequantizable Poisson manifold. Suppose
thatπ : M̄ → M is a prequantization bundle and letθ be a connection form in the principal
circle bundleπ : M̄ → M such thatπ∗� = dθ . Denote byE the infinitesimal generator of
the action ofS1 on M̄. Using theorem 3.1 (see (17)) we obtain that(3̄1, E) and (3̄2, E)

are Jacobi structures on̄M, where3̄1 and3̄2 are the 2-vectors on̄M given by

3̄1 = 3H + E ∧ ξH 3̄2 = 3H. (38)

Next, we shall study the structures(3̄1, E) and(3̄2, E).
(i) The Jacobi structure(3̄1, E). We consider onM̄ the 2-form8 given by

8 = dθ − (π∗η) ∧ θ. (39)

A direct computation proves that(M̄, 8) is a LCS manifold with Lee 1-formω = π∗η.
We will show that the Jacobi structure on̄M induced by the LCS 2-form8 is just

(3̄1, E). Denote by[̄ : X(M̄) → �1(M̄) the isomorphism ofC∞(M̄, R)-modules defined
by [̄(X̄) = iX̄8, and by[ : X(M) → �1(M) the isomorphism ofC∞(M, R)-modules given
by [(X) = iX� + η(X)η. Then, from (39), we have that

π∗([(X − η(X)ξ)) = [̄XH + (η(X) ◦ π)θ [̄E = π∗η = ω (40)

for X ∈ X(M), which implies that

([−1(α − α(ξ)η))H = [̄−1π∗α − (α(ξ) ◦ π)E (41)

for α ∈ �1(M).
Let (3̃1, E1) be the Jacobi structure on̄M induced by8. It is clear thatE1 = E (see

(11) and (40)). Moreover, using (8), (11), (13) and (39)–(41), we deduce that

3̃1(π
∗α, π∗β) = 3H(π∗α, π∗β) iθ 3̃1 = ξH (42)

for α, β ∈ �1(M). Thus, from (38) and (42), we conclude that3̃1 = 3̄1.
Finally, if Xf (respectivelyXπ∗f ) is the Hamiltonian vector field onM (respectively

M̄) associated with the functionf (respectivelyπ∗f ) then, from corollary 3.3, we obtain
that

Xπ∗f = XH
f + (π∗f − ξ(f ) ◦ π)E.

(ii) The Jacobi structure(3̄2, E). The Jacobi structure(3̄2, E) on M̄ is not transitive.
In fact, using corollary 3.3 and the fact that the characteristic foliationD of (M, 3) is the
distribution of codimension 1 given byη = 0, we deduce that the characteristic foliation
D̄ of the Jacobi manifold(M̄, 3̄2, E) is the completely integrable distribution defined by
π∗η = 0. Moreover, it follows that

D̄ = DH ⊕ 〈E〉 T M̄ = D̄ ⊕ 〈ξH〉.
On the other hand, let̄L be a leaf of the characteristic foliation of̄M and((3̄2)L̄, EL̄) the
transitive Jacobi structure on̄L (see section 2.3). Then, ifθL̄ is the restriction toL̄ of the
1-form θ we have thatθL̄ is a contact 1-form on̄L and the Jacobi structure on̄L induced
by the 1-formθL̄ is just ((3̄2)L̄, EL̄). That is, the leaves of this Jacobi structure are all
contact manifolds.
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Finally, using corollary 3.3, we obtain the relation between the Hamiltonian vector fields
of M andM̄. This relation is given by

Xπ∗f = XH
f + (π∗f )E

for f ∈ C∞(M, R).
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J. Geom. Phys.6 627–49

[2] Blair D E 1976 Contact Manifolds in Riemannian Geometry (Lecture Notes in Mathematics 509)(Berlin:
Springer)

[3] Bott R and Tu L W 1982Differential Forms in Algebraic Topology, GTM 82(Berlin: Springer)
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[9] Ibort A, de Léon M and Marmo G 1996 Reduction of Jacobi manifoldsPreprint IMAFF-CSIC

[10] Kirillov A 1976 Local Lie algebrasRussian Math. Surveys31 55–75
[11] Kobayashi S 1956 Principal fibre bundles with 1-dimensional toroidal groupTôhoku Math. J.8 29–45
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